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Preliminaries of

(topological) band theory



Elements of Traditional Band Theory

Non-interacting electrons moving in a perfectly periodic array of atoms

e Electron Hamiltonian commutes with lattice translations

[H, T(R)] =0

R = nya, + nya,+n,a,, n,isaninteger

Lattice translation e
Symmetry T(R) |¢k> = ek R|1/Jk> Crystal momentum k is conserved

 The wave vector k is defined modulo the reciprocal lattice vector
(reciprocal lattice is the Fourier transform of the real-space lattice)

k~k modG

 The wave-vector k “lives” on a d-dimensional torus
k € T4 (1D: —™/4 < k < ™/q, with the end points “glued”)
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Elements of Traditional Band Theory

Non-interacting electrons moving in a perfectly periodic array of atoms

e Electron Hamiltonian commutes with lattice translations

[H, T(R)] =0

R = nya, + nya,+n,a,, n,isaninteger

Lattice translation e
Symmetry T(R) |¢k> = ek R|1/Jk> Crystal momentum k is conserved

Blochthm:  |Wg) = e R|u,,)
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Bloch Hamiltonian: H(k) — . DT T | 2 Foap

H(K)|u,(k)) = E, (k)|u,(k))




Insulators and metals

Bloch theorem and band structure: S
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Quantum topological equivalence

» How to define topological invariants for quantum states of matter?
* \We need a notion of topological equivalence of quantum states.

» The notion of quantum topological equivalence follows from adiabatic continuity

s £ /%)

(7

If we can adiabatically deform |0) into |0"), then |0)~]0')



Band topological equivalence

» How to define topological invariants for quantum states of matter?

» \We need a notion of topological equivalence of quantum states.

Topological Equivalence : adiabatic continuity

Band structures are equivalent if they can be continuously deformed
into one another without closing the energy gap

Insulator | Insulator Il
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1) The integer Quantum Hall effect



Classical Hall effect (1879)

Classical equation of motion

m(%+§) = —e(E+7AB)

Conductivity tensor
Drude Conductivity

Opr = g0 _ ne’r
1+ (wer)? o

. i
1+ (w.T)? We = %

Resistivity tensor

Pzx = O
mw, 1
= — B
Py ne? ne



Quantum Hall effect (1980)

Stormer,
Physica B1T7,
401 (1992)

MAGNETIC FIELD (Tesla)

K. v. Klitzing, G. Dorda, and M. Pepper, PRL 45, 494 (1980)



Quantum Hall effect
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K. v. Klitzing, G. Dorda, and M. Pepper, PRL 45, 494 (1980)

- Quantization of the Hall resistance at low temperature : R, — /1 Results independent of geometrical
e2n and microscopic details

2

Ry = ']_ = 25812.807 () Quantum of resistance; UNIVERSAL constant
l

Used as a metrological unit : help to redefine the unit of mass !




Quantum Hall effect
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K. v. Klitzing, G. Dorda, and M. Pepper, PRL 45, 494 (1980)

- Quantum Hall conductivity changes by plateaus. J, =0,E,
2

- Each plateau is perfectly quantized by an integer g, = ne—
number in unit of e?/h f h

Integer accurate to 10°



Semi-classical picture

Electron in an orbital magnetic field :

1

2m,

H = 5-—(p+ eA)?

1
En = (n + 5) hw,, Landau levels

v

2D Cyclotron Motion,

Landau Levels ;
*
!

» k




Why such perfect

robustness & quantization ¢



Semi-classical picture

X Z > y
2D Cyclotron Motion,
Landau Levels Edge states= skipping orbits

- Landau levels (LLs) bend near sample edge.
- The Fermi level intersects LLs at the edge.

- Nb of edge states at the Fermi level= Nb of occupied bulk LLs

Landau levels with a bulk gap and (protected) edge states



The edges’ viewpoint: Robustness of n

- Electrons on same edge move along the same direction.

- Electrons on opposite edges move along the opposite directions.

Chirality = Consequence of time reversal
symmetry breaking

Robustness against backscattering

chiral edge state cannot be localized by disorder
(no backscattering)

- edge states are therefore perfect charge conductors

Only 1 branch (chira)




The bulk point of view

The quantum Hall effect: a topological property?

Distinction between the integer quantum Hall state and a conventional insulator
IS a topological property of the band structure

H(k) :  Brillouin zone | > Hamiltonians with energy gap

Classified by Chern number: "= 2_2 / Fd’k  (=topological invariant) n € Z

filled
states

Kubo formula: /_7-“(]2L — €_
TY — / 7,
! 27

filled
Bhetes Thouless et al., PRL 49, 405 (1982)

Alternative description: n is a bulk topological invariant



Example of atopological invariant

Can we tell by local measurements whether we are
living on the surface of a sphere or a torus?

g=0

N

J e 97 (1-7)
S

. 1
Gausslan curvature, K g = + iR

g=1

Topological invariant = quantity that does not change under continuous deformation




Berry connection & curvature

For a given band, we can introduce :

Berry connection:

| uy) A(k) = —Im (uy|Vi|uy)

Berry phase :

o gb—j{A(k)-dk

Berry curvature

o ZTE/a ﬂ(k) — V X A
s du | du
R Iwk(r) ‘ (2, (k) = —2Im < dk, | dk, >
Stokes thm :

¢ — f 0, (k) d*k



Chern theorem

Region B Region A

Berry curvature Stokes thm applied to A:

( FE Q) b= /A}"(A)dSA mod 27

Stokes applied to B:

(/):—f}_()\)ds)\ mod 27
B

Subtract:

0= %f()\) dS) mod 27

Chern Theorem: f]:(/\) dSy =27 C with C € 7,

C = First Chern number



Application of Chern theorem

Let us apply this result to the Brillouin zone

<

U
Q

Insulator




Application of Chern theorem

Let us apply this result to the Brillouin zone

<
|uy) O (k) — 91 du | du
0 (k) "\ @k, | dk,
N
Insulator
O = f = 2aC
2nt/a
2
Anomalous Hall conductivity: O 3¢, = C

h



Topological phase transition

quantum number

quantum number quantum number



Bulk-edge correspondence

Topological Topological

Phase 1 Phase 2

Something special at
the boundary



Bulk-edge correspondence

Country B
Drive on right

China

«— Something
special at
boundary?




Bulk-edge correspondence




Bulk-edge correspondence

Two materials described by different topological invariants C, and C,
placed in contact = emergence of |C, - C,| gapless edge modes

Topological invariant C, Topological invariant C,

0’. C_)
S oo X P o0 4
S o *, S
*
© Teo %Ne o

|C, - C,| gapless edge modes



Chiral edges states in the QHE

Gapless states must exist at the interface between different topological phases

IQHE state Vacuum y n=1 n=0
n=1 n=0 - B
X

Edge states ~ skipping orbits Smooth transition : band inversion

Edge States

Empty Band : : Empty Band

Empty Band
gap lgap gap
Filled Band Filled Band Filled Band

h=0 n£0 n=0



II) The anomalous
quantum Hall effect
or
the 2D Chern insulator



Anomalous Hall effect (1881)

z Ferromagnet

L.

Current, |

Voltage, V

Measure of Hall conductivity in absence of a magnetic field



Quantum anomalous Hall effect (2013 ?)

A The lowest sub-bands
with broken TRS Fermi level

chemical potential

<

FM insulator
(2D crystal)
NO B+

>

Anomalous Hall conductivity O azqy — f_LC

Like integer quantum Hall effect, but no Bext



Quantum anomalous Hall effect (2013 ?)

C indium electrode

1
=
-

o

Xy

o (0), a_(0) (€°/h)

bare substrate film

C.-Z. Zhang et al., Science 340, 167 (2013)



Edge states: 2D QAH insulator

S

FM insulator
(2D crystal)
NO B

/I

F

>

Existence of a chiral edge state without magnetic field !

/

AV



Edge states

: 2D QAH insulator
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Proof of principle: the Haldane model

VOLUME 61, NUMBER I8 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance o™ in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity
anomaly” of (2+1)-dimensional field theories.




Graphene

A One orbital per site

Two atoms per unit cell (A and B)

Spinless

Band structure near Dirac cones
A/B sublattice

h(k) = d(k) -of

Emergence of massless Dirac fermions at low energies:

K /K’ valley

h(q) = vr*o*q. +voq,

\

Momentum measured from Dirac node




Symmetries of graphene

« Inversion symmetry A sublattice 4=y B sublattice

A

P=o0,7,

Ph(q)P = h(—q)

« Time reversal symmetry:

A

T = 7l

~

Th(q)T = h(—q)



Making graphene insulating

E

h(q) =v7°0" ¢z +vorqy +d:(q)o” \%zm)\

A~

Need to break either time-reversal symmetry or inversion symmetry

(i) Break inversion symmetry

d,(q) = ms

(i) Break time-reversal symmetry

d,(q) = myTt?

Semenoff insulator (1984)

Haldane insulator (1988)
= Quantum spin Hall insulator
= Chern insulator



Proof of principle: the Haldane model

VOLUME 61, NUMBER I8 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance o™ in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity
anomaly” of (2+1)-dimensional field theories.




Topological characterization
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Two strategies:

1) Compute the eigenvectors, Berry connection, Berry phase and Chern number.
i) Look at d(k)

Ey =+|d(k)| Spectrum flattening  d(k) = SEI&

~

Mapping:  d(k) : Brillouin zone —— d(k) € 52
() =T



Topological characterization
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Two strategies:
1) Compute the eigenvectors, Berry connection, Berry phase and Chern number.

i) Look at d(k)
Ey =+ |d(k)| Spectrum flattening d(k) = d(k)
d(k)|
Semenoff __
insulator Haldane ﬂ\\
insulator A AVER IR
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Trivial insulator: M = Mg



Topological characterization
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Two strategies: ‘.

i) Compute the eigenvectors, Berry connection, Berry phase and Chern number.

i) Look at d(k) E4 = +|d(k)| Spectrum flattening d(k) = Igt—gl
trivial phase non-trivial phase
ng =
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Phase diagram of the Haldane model

Mit,




Bulk-boundary correspondence:
Application to the Haldane model

trivial
m_>0 insulator (x>0)

o’ V.

topological
insulator (x<0)

L Domain wall
- /& 7 along the x-axis
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Dispersing Jackiw-Rebbi-like edge modes

m, <0 [ [ ky conserved

0

m<0

Hy = vp(—i6,0y + i6,ky) + my(x)6,

Fixing k,, maps the problem on the 1D Jackiw-Rebbi model, with the edge mode

|l/)(ky)> = e'Y exp [_ifio |‘m+(x’)|dx’] |X4+)  where

Hy | w(ky)) = veky [p(k,)) EEE)  CHIRAL STATE

e =



Properties of the chiral edge mode

h/)(ky)) = e'y¥ exp _iffoo |m+(x')|dx'] | x+)

Conducting chiral edge

The chiral mode can not be stopped by any obstacle or edge disorder.

Normally, any 1D system localizes at low temperature (Anderson insulator). The
chiral edge is protected from localization.

Such a 1D mode can not appear in a pure 1D system, only at a boundary of a higher-
dimensional system.

The chiral edge carries the quantized Hall conductivity (IQHE). o, =j,/E =ne?/h



II1) A brief incursion
into
2D topological insulators
Or
The 2D spin quantum Hall insulator



Destroying Dirac points in spinfull graphene
Graphene Hamiltonian with spin & valley indices restored

H = vp(I®T,Q8 qx + IRI®E, q;) +V
o — |

Spin Valleys (K & K’)  Sublattices (A & B)  gap-opening perturbation

1. Inversion (P-) breaking perturbation (trivial insulator, e.g. Boron nitride)
V=m,IQI®4,

2. T-reversal breaking perturbation (Chern insulator, e.g. Haldane model)
V= m;IQ%,84,

3. Symmetry preserving perturbation (topological insulator, Kane-Mele model)

>

V= mgo ,Q1,80,



The Kane-Mele model

Kane-Mele model = Haldane model 2

spinup Y N spin down Y N
m_<0 my >0 m_ >0 m, <0
K 3 K K

}T _ 7'[Haldane 0
Kane—Mele — 0 f[*
Haldane

Spin-Hall conductivity:

82

=0k, — 03y = (M — )%

S
Y

o




Can the degeneracy be lifted?

e Other spin-orbit couplings are possible (e.g., Rashba), which introduce off-
diagonal terms and break spin conservation (no notion of spin up or down exists)

(j{Haldane 0 ) > (g'[Haldane # )
=~ T %
0 }[Haldane # }[Haldane

* (Can the generic spin-orbit perturbation lift the degeneracy?

NO!

v




The degeneracy is protected by T-reversal symmetry

* Time-reversal operator = spin-rotation and complex conjugation
lPT) in$ (‘PT " N
’]I‘( = e!™y >= « |, T? = -1
Yy Yy —Yr
* Time-reversal symmetry implies [F, T]=0

e This guarantees double-degeneracy of the spectrum

* Hence, the must be (at least) 2 distinct, degenerate states
with energy E connected by T-reversal (Kramers doublet).

 We can’t remove degeneracy at E=0, as long as perturbation
does not break T-reversal!

A (non-Chern) topological invariant is responsible for this robustness

This is the Z2 invariant



1D Helical edges states

Bulk energy gap, but gapless edge states

“Spin Filtered” or “helical” edge states Edge band structure

vacuum

eSS SSSAsaSSaaas aad
| == !
QSH Insulator

0 n/a — kK

Edge states form a unique 1D electronic conductor

® HALF an ordinary 1D electron gas

® Protected by Time Reversal Symmetry



Conductance in HgTe/ CdTe heterojunctions

normal inverted
d = 6.5 d = B.5nm
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See also Multiterminal conductance probes (Roth et al., Science 325, 294 (2009))
Spin polarization of the quantum spin Hall edge states (Brune et al.,Nature Physics 8, 486 (2012))
See also quantum spin Hall effect in WTe,, S. Wu et al., Science 359, 76 (2018)



IV) 2D chiral topological
superconductors



