Exciton-polariton based topological photonics and topological lasers

O. Bleu, D. Solnyshkov, G. Malpuech
Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, Clermont Ferrand, France

Collaboration: J.Bloch’s group, C2N, CNRS Paris, A. Amo, Phlam, Lille

- Introduction.
- Z topological insulator.
- Quantum Valley Hall effect.
- Quantum fluids: Z$_2$ Topological Insulator for vortices.
- Topological Lasers
2D lattices (photonic)

→ Planar Fabry Perot cavity:
 2D parabolic dispersion for radiative photon modes

\[E_C(k) = E_C(0) + \frac{\hbar^2 k^2}{2m_C} \]

→ Lateral etching: 0D modes (photonic atoms).

→ Coupled cavities:
 Molecules, Lattices.
 Each atomic states gives a dispersive branch.

Good description with tight binding approach. but
Radiative modes TE and TM modes are close.

Exciton+photon → Exciton-Polariton
 - Interacting photons.
 - Zeeman splitting under magnetic field.
Berry curvature and Chern number

• Spinor Wave function in a lattice: $\psi_k = \begin{pmatrix} u_k^- \\ u_k^+ \end{pmatrix} e^{i\phi} = \begin{pmatrix} \cos \frac{\theta_k}{2} e^{i\phi} \\ \sin \frac{\theta_k}{2} \end{pmatrix} e^{i\phi}$

• Pseudo spin vector S_k associated to the wave function.

• Berry curvature is related to the change of S_k in reciprocal space:

$$B = \frac{1}{2} \sin \theta (\partial_x \theta \partial_y \phi - \partial_y \theta \partial_x \phi)$$

Chern Number: Integral of the Berry curvature over a band in the first Brillouin zone.
A gap should close to change topology. The vacuum is trivial. Gap Closure on the interface.

One way edge modes, which cannot be elastically scattered.
Intrinsic Chirality of Photons

2 spin projections coupled by TE-TM Splitting

Spin-orbit coupling for light
Optical Spin Hall effect

TE-TM + Zeeman splitting

Berry curvature for photons (PRL 102, 046407, 2009)

Photon/Polariton anomalous Hall effect in a planar cavity

Arxiv 2016, PRL 121, 020401 (2018). See O. Bleu Poster
Chiral photons combined with a good lattice \rightarrow Topological gaps

\rightarrow Initial proposal Haldane-Raghu PRL 100, 013904 (2008).
\rightarrow Observed at GHz frequencies Soljacic Group Nature 2009.

Proposal for Exciton-polaritons at optical frequencies

For realistic parameters
Chern number ± 2

Defect

T. Jacqmin & al,
Edge modes under magnetic field reported in S. Klembt et al. (Hofling group) Nature 562, 552, (2018).
\mathbb{Z}_2 topological insulator

Quantum *Spin* Hall Effect (2005)

Total Chern number of Bands is zero.
But Spin Chern number $1/2(C_+ - C_-)$ is 1.
Spin current on the sample edge.
Time Reversal Symmetry (No magnetic field).
No spin conversion for electrons.

Does not work for any spinor!!
(for instance polarised photons)

C.L.Kane, E.J.Mele,
Quantum (pseudo)-spin Hall effect

Quantum Valley Hall Effect

How to make it robust (against disorder scattering for instance)?
Honeycomb lattice (scalar case)

Real space

Reciprocal space

Tight-Binding Hamiltonian

\[
H_{\text{graphene}} = -\begin{pmatrix}
0 & Jf_k \\
Jf_k^* & 0
\end{pmatrix}
\]

\[
f_k = \sum_{j=1}^{3} \exp(-ikd_{\varphi_j})
\]

Dispersion:

Close to K or K'

\[
H \sim \tau_z \sigma_x k_x + \sigma_y k_y
\]

Effective field representation

\[
H = \Omega_{\text{eff}} \hat{\sigma}
\]

Sub-lattice pseudo-spin

\[
\tau_z = \pm 1
\]

\[
\tilde{\Omega}_{\text{eff}} \approx \nu \begin{pmatrix}
\tau_z k_x, k_y, 0
\end{pmatrix}^T
\]

Opposite winding at K and K'
Let us make A and B different (staggered lattice).

\[
H_{\text{staggered}} = -\begin{pmatrix}
-\Delta & Jf_k^- \\
Jf_k^+ & \Delta \\
\end{pmatrix} \approx -\left(J \left(\tau_z k_x \sigma_x + k_y \sigma_y \right) + \Delta \sigma_z \right)
\]

- **Massive Dirac Hamiltonian.**
- Gap opening.
- Berry curvature of opposite sign at K and K'.
- Valley dependent angular momentum.

Valley = pseudo-spin

- Definition of a Valley Chern Number \(C_K = -C_{K'} \)

\[
C_{KK'} = C_K - C_{K'} = 1 \quad Z_2 \text{ topological invariant, like in the Quantum Spin Hall effect at the zigzag interface between lattices of opposite staggering.}
\]

Valley current of topological origin.

Remark

Topological states, but unprotected from inter-valley scattering.
Same as QSHE, un-protected from inter-spin scattering.
In photonic crystal slabs:

- ….

Direct analog of Quantum Spin Hall Effect cannot be made for photons.

because

Photon (pseudo)-spin is not protected by Time Reversal Symmetry.

TE-TM splitting couples counter propagating spin states.

One needs to cancel competly TE-TM, which is demanding.

Photonic Quantum Valley Hall effect

Zig-zag interface between 2 opposite staggered lattices

Domain wall topological invariant*

$$ N_{k,k'} = C_{k,k'}(l) - C_{k,k'}(r) = \pm 1 $$

→ 1 interface state in each valley
→ One valley, one group velocity.

However, no protection against inter-valley scattering!!

Valley pseudo-spin is protected by a spatial symmetry which is not fulfilled by random disorder.

Condition: Presence of a Bose Einstein Condensate of exciton-polaritons at the Gamma point.

BEC excitation: Quantized vortices in 2D. **Vortex Core**

Staggered honeycomb lattice.
- Vortex core composed by states near K and K' possessing an angular momentum.
- The quantum vortex winding is linked with the Valley.
- The Valley imposes a well defined propagation direction.

Winding - Valley coupling

Valley – Propagation direction coupling.

Quantized vortex

$$\psi = \sqrt{n(r)}e^{ip\theta}$$

Vortex density

$$\rho = \frac{\hbar}{\sqrt{c\alpha n}m}$$
Robust Quantum Valley Hall effect

Vortex core inherits linear states chirality

\[
\frac{i\hbar}{\partial t} = -\frac{\hbar^2}{2m}\Delta \psi + \alpha|\psi|^2 \psi + U\psi - \mu \psi
\]

→ Robust chiral propagation thanks to combination of real and momentum space topologies

Non-linear analog of QSHE: vortex winding replacing electron spin

Topological protection of vortex winding replaces the TRS protection of electron spin.

[Image: Simulation of chiral vortex propagation]
Topological lasers

Get Lasing in a topological mode.
Not evident in the microwave range where a lot of experiments are carried out…

Initial proposal for a 1D topological laser

Pump on the edge.
Condensation in the edge state.
1D: Dimer chain and edge states

\(t' > t \): tightly bound pairs = “molecules” \(\text{AB} \), no «extra» atoms
Two bands: \(\text{AB} \) in phase/out of phase (like s and p states of a single site)

\(t' < t \): tightly bound “molecules” \(\text{BA} \); two «extra» atoms on the edges

Topological quantity characterizing edge states – the Zak phase

\[
\gamma_n = \int_{-\pi/a}^{-\pi/a} \frac{2\pi}{a} \int_{0}^{a} u_{nk}^* (x) i \frac{\partial u_{nk} (x)}{\partial k} \, dx \, dk
\]
Dimerization of a zigzag chain for polaritons

- Polarization-dependent coefficients t and t'
- Tight-binding calculation of the eigenstates
- 0 edge states in D-polar, 2 edge states in A-polar

Same result with Rashba field

Same can be done with p-orbitals
Edge states in the condensation

• Edge states favored by higher overlap

• Localized pumping

\[i\hbar \frac{\partial \psi_{\pm}}{\partial t} = - (1 - i\Lambda) \frac{\hbar^2}{2m} \Delta \psi_{\pm} + \beta \left(\frac{\partial}{\partial x} \mp i \frac{\partial}{\partial y} \right)^2 \psi_{\pm} \]
\[+ U \psi_{\pm} - \frac{i\hbar}{2\sigma} \psi_{\pm} + ((U_R + i\gamma(n)) \psi_{\pm} + \xi) \exp \left(- \frac{(r-r_0)^2}{\sigma^2} \right) \]

D. Solnyshkov et al., PRA 89, 033626 (2014).

Pump on the edge.
Condensation in the edge state.

Observation of a 1D topological laser
2D Topological Lasers

Based on Quantum Anomalous Hall Effect

Based on Quantum Spin Hall Effect
Conclusion

- Intrinsic chirality of Photon modes \rightarrow Z topological insulator.
- Quantum fluids makes Quantum Valley Hall effect robust.
- Topological lasers in 1D-chains.