Chiral modes in optics and electronics of 2D systems – Aussois, November 26-28, 2018

Topological Photonics with Microwaves

Fabrice Mortessagne

<u>inphyni</u>

Waves in Complex Systems team

- Flexible experimental platforms in microwaves or optics (and a hint of acoustics)
- Random Matrix Theory, effective Hamiltonian formalism, numerical simulations
- Complex geometries : multimode optical fibres, 2D or 3D microwave cavities
- (dis)ordered lattices : coupled µwave resonators, photo-induced/laser-written photonic structures
- Wave chaos Anderson localization
- Artificial Dirac materials
- Quantum fluids of light
- Topological photonics

<u>inphyni</u>

Waves in Complex Systems team

- Flexible experimental platforms in microwaves or optics (and a hint of acoustics)
- Random Matrix Theory, effective Hamiltonian formalism, numerical simulations
- Complex geometries : multimode optical fibres, 2D or 3D microwave cavities
- (dis)ordered lattices : coupled µwave resonators, photo-induced/laser-written photonic structures
- Wave chaos Anderson localization
- Artificial Dirac materials
- Quantum fluids of light
- Topological photonics

Topological photonics

This field aims to explore the physics of topological phases of matterin a novel optical context.T. Ozawa et al. arXiv1802.04173

- 2008: First theoretical prediction (Haldane & Raghu)
- 2009: First experimental realization (Wang *et al.*, MIT)
- since there: Different strategies to emulate topological phases with photons

Chiral edge state in a lattice of coupled ring resonators on a silicon chip.

Pseudospins given by clockwise and anticlockwise modes.

Outline

I. Microwave realization of tight-binding model

dielectric resonators, TE mode, evanescent coupling, LDOS & eigenstates

2. SSH chain: Control of topological interface states

zero-mode, selective enhancement, non-linear absorption, reflective limiter

3. 2D lattices : Lieb (and Penrose)

partial symmetry breaking, (not so) flat band, zero-mode, gap labeling (naive picture)

Experimental setup

- Vectorial Network Analyzer (@ 6~7 GHz): complex scattering matrix;
- dielectric resonators sandwiched between metallic plates;
- 'kink' and 'loop' antennas excite TE polarization:

 $\psi(\vec{r}) = B_z(\vec{r})$

Experimental setup

- Vectorial Network Analyzer (@ 6~7 GHz): complex scattering matrix;
- dielectric resonators sandwiched between metallic plates;
- 'kink' and 'loop' antennas excite TE polarization:

 $\psi(\vec{r}) = B_z(\vec{r})$

Experimental setup

- Vectorial Network Analyzer (@ 6~7 GHz): complex scattering matrix;
- dielectric resonators sandwiched between metallic plates;
- 'kink' and 'loop' antennas excite TE polarization:

 $\psi(\vec{r}) = B_z(\vec{r})$

Microwave resonator

Dielectric ceramic (ZrSnTiO):

- high permittivity: arepsilon=37
- low loss: $Q\simeq 7000$

8mm

• TE₁ Mie resonance @ 6.65 GHz

- Energy essentially inside
- Evanescent field outside

Microwave resonator

Dielectric ceramic (ZrSnTiO):

- high permittivity: $\varepsilon = 37$
- low loss: $Q\simeq 7000$

8mm

• TE₁ Mie resonance @ 6.65 GHz

 $B_z(\vec{r}, z) = B_0 \sin\left(\frac{\pi}{h}z\right) \times \begin{cases} J_0(\gamma_j \vec{r}) \\ \alpha K_0(\gamma_k \vec{r}) \end{cases}$

Tight-binding coupling

$$H(d) = \begin{pmatrix} \nu_0 & -t_1(d) \\ -t_1(d) & \nu_0 \end{pmatrix}$$

 $t_1(d) \propto -|K_0(d/2\ell)|^2$ $\ell \simeq 3 \,\mathrm{mm}$

Buildings blocks of artificial molecules, (quasi-)crystals, disordered lattices... (well controlled metamaterials)

LDoS & eigenstates

A direct access to the density of states and intensity of the eigenstates through:

$$g(\mathbf{r}_1,\nu) = |S_{11}(\nu)|^2 \varphi_{11}'(\nu) \qquad \arg[S_{11}(\nu)] = \varphi_{11}(\nu)$$

$$g(\mathbf{r}_1, \nu) \simeq \frac{\sigma}{\Gamma} \sum_{n} [\Psi_n(\mathbf{r}_1)|^2 \delta(\nu - \nu_n)]$$

Local Density of States, DoS by averaging for a given eigenfrequency: measure the local intensity

Eigenstates

Eigenstates

Eigenstates

A flexible and versatile experimental platform

Outline

I. Microwave realization of tight-binding model

dielectric resonators, TE mode, evanescent coupling, LDOS & eigenstates

2. SSH chain: Control of topological interface states

zero-mode, selective enhancement, non-linear absorption, reflective limiter

3. 2D lattices : Lieb (and Penrose)

partial symmetry breaking, (not so) flat band, zero-mode, gap labeling (naive picture)

Bloch Hamiltonian:
$$\mathcal{H}_{k} = \begin{pmatrix} 0 & f^{*}(k) \\ f(k) & 0 \end{pmatrix}$$

Eigenstates: $\psi_{k}^{\pm}(r) = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm 1 \\ e^{i\phi_{k}} \end{pmatrix} e^{ik \cdot r}$
Topological quantity: $\phi_{k} = \arg[f(k)]$

Bloch Hamiltonian:
$$\mathcal{H}_{k} = \begin{pmatrix} 0 & f^{*}(k) \\ f(k) & 0 \end{pmatrix}$$

Eigenstates: $\psi_{k}^{\pm}(r) = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm 1 \\ e^{i\phi_{k}} \end{pmatrix} e^{ik \cdot r}$
Topological quantity: $\phi_{k} = \arg[f(k)]$

Two topological phases

winding number = 0, $\mathcal{Z} = 0$ winding number = 1, $\mathcal{Z} = \pi$

Zak phase corresponds to the Berry phase accumulated by the wavefunction along a path exploring the Brillouin zone.

Topological interface state

In a semi-infinite system, the existence of **edge states** is determined by the topological property of the **bulk wavefunction**:

Interface between 2 distinct topological phases:

 $Z_{\alpha} = 0$

mid-gap topological interface state (zero-mode)

 $\mathcal{Z}_{\beta} = \pi$

Microwaves realization

• the defect breaks the sublattice (chiral) symmetry

• the interpresentate is spectrally protected and spatially confined

Selective enhancement by losses

losses on the B-sublattice through elastomer patches breaks T-symmetry

• the topological state is spectrally and spatially unaffected

Loss-assisted propagation

transmissions between the defect resonator and all the others :

 $S_{12}(\vec{r}_i, \vec{r}_d; \nu) \xrightarrow{FT} s_i(t)$

without absorption, diffraction and interferences spoil the propagation

with absorption, the enhanced defect mode dominates the propagation

Topology is crucial

regular chain with central defect:

- localized absorption or disorder hybridizes defect and extended states
- no spectral and spatial topological protections

Robust to disorder

random couplings which preserve the dimer structure

with or without absorption, the topologically protected defect mode is insensitive to structural disorder

Robust to disorder

random couplings which preserve the dimer structure

mode is insensitive to structural disorder

Optical limitation

Ideal optical limiter

The larger the dynamical range, the better the limitation.

Ideal optical limiter

The larger the dynamical range, the better the limitation. New concept: Topological reflective limiter

Non linear absorption

Losses depend on the strength of the incident radiation

Self-regulated losses

Reconfigurable losses

Fast diode providing reconfigurability of the limiting threshold via an externally tuned DC voltage.

Material with a dielectric to metallic phase transition at some critical temperature.

Lossy resonator

Focus on demonstrating the effect of losses at the defect resonator on the transport properties.

Standalone lossy resonator acts as a sacrificial limiter.

Topology-assisted reflective limiter

- As losses increase the transmission goes down and absorption goes down, meaning that the reflection goes up.
- The topological structure does not overheat because it 'protects' the lossy defect by decreasing the value of the field intensity as losses are increasing.

Phys. Rev. B, 95, 121409(R) (2017)

Topology-assisted reflective limiter

- As losses incretransmission ge absorption gee meaning that t goes up.
- The topological structure does not overl 'protects' the la decreasing the field intensity a increasing.

Phys. Rev. B, 95, 121409(R) (2017)

Kottos

Genuine non-linear losses

Silicon Schottky diode (Skyworks SMS7630)

Preliminary results: It works !

Outline

I. Microwave realization of tight-binding model

dielectric resonators, TE mode, evanescent coupling, LDOS & eigenstates

2. SSH chain: Control of topological interface states

zero-mode, selective enhancement, non-linear absorption, reflective limiter

3. 2D lattices : Lieb (and Penrose)

partial symmetry breaking, (not so) flat band, zero-mode, gap labeling (naive picture)

Lieb lattice

M

Global chiral symmetry:

$$H_{\rm TB}(\vec{k}) = \begin{pmatrix} 0 & t_{AB}(\vec{k}) \\ t_{BA}(\vec{k}) & 0 \end{pmatrix}$$
$$\sigma_z H_{\rm TB}(\vec{k})\sigma_z = -H_{\rm TB}(\vec{k})$$

uniform couplings: topologically boring...

more interesting when dimerized:

- flat band on the majority sublattice
- with an appropriate choice of boundary conditions: one extra zero-mode on the minority sublattice (B sites)... but still degenerated with the flat band.

Partial chiral symmetry

In the experiment, next-nearest neighbor couplings are effective: w'' > w' = w''' > w $H_{\text{TB}}(\vec{k}) = \begin{pmatrix} t_{AA}(\vec{k}) & t_{AB}(\vec{k}) \\ t_{BA}(\vec{k}) & 0 \end{pmatrix}$

$$\left[\sigma_z H_{\rm TB}(\vec{k})\sigma_z\right]_{BB} = \left[-H_{\rm TB}(\vec{k})\right]_{BE}$$

- the chiral symmetry of the majority sublattice is broken
- the flat band becomes dispersive
- the zero-mode is lifted away

<u>INPHYNI</u>

Engineering of defect states

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 $\bigcirc \bigcirc$

 $\bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc () $\bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc () \bigcirc \bigcirc $\bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Topological protection

generic disorder

Selective enhancement

Intriguing quasicrystal

In a quasiperiodic cristal, the atomic positions along each symmetry axis are described by a sum of two or more periodic functions whose wavelengths have an irrational ratio (Bindi *et al.*)

Intriguing quasicrystal

E

Diffraction pattern with 5-fold symmetry !

Integrated density of states with a staircase structure:

- irregular step heights
- smaller steps at higher energy resolution
- footsteps labeled by Chern numbers

Microwave Penrose tiling

- Penrose lattice with rhombic tiles
- 164 resonators placed at each rhombus vertex

$$H = E_b \sum_{i} |i\rangle \langle i| + \sum_{i,j,i\neq j} t_{ij} |i\rangle \langle j|$$

Density of states

Band wavefunctions

Dominant couplings

 $d_{\rm min} = 10 \,\mathrm{mm} \Rightarrow t_{\rm max} \simeq 73 \,\mathrm{MHz}$

 $\lambda d_{\min} \simeq 16 \,\mathrm{mm} \Rightarrow t \simeq 8 \,\mathrm{MHz}$

dimer

trimer

dominant coupling along the diagonal of the thin rhombus

Band structure

 $E_1 = E_b - \sqrt{2}t_{\rm max} \simeq 6.55 \,\mathrm{GHz}$

 $E_5 = E_b + \sqrt{2}t_{\rm max} \simeq 6.75 {\rm GHz}$

 $E_2 = E_b - t_{\rm max} \simeq 6.58 \,\rm GHz$

 $E_4 = E_b + t_{\rm max} \simeq 6.73 \,\rm GHz$

 $E_3 = E_b = 6.65 \,\mathrm{GHz}$

 $|\phi_2\rangle = |1_d\rangle - |2_d\rangle$

 $|\phi_4\rangle = |1_d\rangle + |2_d\rangle$

Isolated sites

 $|\phi_{3,a}\rangle = |1_t\rangle - |3_t\rangle \qquad |\phi_{3,b}\rangle = |1_s\rangle$

Band populations

of dimers: $\beta_1 = \beta_5 = 5 - 3\lambda$ # of trimers: $\beta_2 = \beta_4 = 5\lambda - 8$ # of others: $\beta_3 = 1 - 2\beta_1 - 2\beta_2 = 7 - 4\lambda$

Band populations

$$\mathcal{N}(E) = \begin{cases} \beta_1 = 5 - 3\lambda, & E \in \Delta E_1 \\ \beta_1 + \beta_2 = 2\lambda - 3, & E \in \Delta E_2 \\ \beta_1 + \beta_2 + \beta_3 = 4 - 2\lambda, & E \in \Delta E_3 \\ \beta_1 + \beta_2 + \beta_3 + \beta_4 = 3\lambda - 4, & E \in \Delta E_4, \end{cases}$$

Vignolo et al., Phys. Rev. B (2016)

Physical picture of the gap labeling

Vignolo et al., Phys. Rev. B (2016)

Physical picture of the gap labeling

Nice physics 😁

2D Materials Publishing

2D Mater. 4 (2017) 025008

PAPER

Partial chiral symmetry-breaking as a route to spectrally isolated topological defect states in two-dimensional addition derais

Charles Poli¹, Henning Schomerus¹, Matthieu Bellec², Ulrich Kuhl² and Fabrice Mortessagne²

Microwave emulations and tight-binding calculations of transport in polyacetylene

Thomas Stormann^a John A Eranco-Villafañe^{b,a}, Yenni P. Ortiz^a, Ulrich Kuhl^c, Seligman^{a,d} Fabrice M CrossMark

PHYSICAL REVIEW B 95, 035413 (2017)

Transport gap engineering by contact geometry in graphene nanoribbons: Experimental and theoretical studies on artificial materials

Thomas Stegmann,^{1,*} John A. Franco-Villafañe,^{1,2,†} Ulrich Kuhl,³ Fabrice Mortessagne,³ and Thomas H. Seligman^{1,4}

RAPID COM

PHYSICAL REVIEW B 95, 121409(R) (2017)

Waveguide photonic limiters based on topologically protected resonant modes

U. Kuhl,¹ F. Mortessagne,¹ E. Makri,² I. Vitebskiy,³ and T. Kottos²

ARTICLE

Received 29 Jul 2014 | Accepted 19 Feb 2015 | Published 2 Apr 2015

Selective enhancement of topologically induced interface states in a dielectric resonator chain

Charles Poli¹, Matthieu Bellec², Ulrich Kuhl², Fabrice Mortessagne² & Henning Schomerus¹

PRL 110, 033902 (2013)

PHYSICAL REVIEW LETTERS

week ending 18 JANUARY 2013

OPEN

Topological Transition of Dirac Points in a Microwave Experiment

Matthieu Bellec,¹ Ulrich Kuhl,¹ Gilles Montambaux,² and Fabrice Mortessagne^{1,*}

PHYSICAL REVIEW B 93, 075141 (2016)

Energy landscape in a Penrose tiling

Patrizia Vignolo,^{1,*} Matthieu Bellec,² Julian Böhm,² Abdoulaye Camara,¹ Jean-Marc Gambaudo,¹ Ulrich Kuhl,² and Fabrice Mortessagne^{2,†}

week ending PHYSICAL REVIEW LETTERS PRL 111, 170405 (2013) 25 OCTOBER 2013

g **First Experimental Realization of the Dirac Oscillator**

J. A. Franco-Villafañe,¹ E. Sadurní,² S. Barkhofen,³ U. Kuhl,⁴ F. Mortessagne,⁴ and T. H. Seligman^{1,5}

Manipulation of edge states in microwave artificial graphene

Matthieu Bellec¹, Ulrich Kuhl¹, Gilles Montambaux² and Fabrice Mortessagne